Experimental study of an intensity-modulated curvature sensor with high sensitivity based on microstructured optical fiber

Author:

Yin ZhiyongORCID,Jing Xili,Li Kaifeng,Wu Biao

Abstract

Surface Plasmon Resonance (SPR) based fiber optic curvature sensors have the advantage of being insensitive to temperature and axial strain. However, they have the disadvantage of low sensitivity and small curvature detection range. To improve the performance of SPR curvature sensors, we propose an intensity-modulated microstructured optical fiber (MOF) curvature sensor. In this sensor, two no-core fibers (NCFs) are used as input-output couplers, and MOF with silver film deposited is used as sensing arms. The light in the cladding is used to excite the SPR, and the exciting resonant valley is extremely sensitive to slight bending changes. The performance of this sensor is investigated theoretically and experimentally. Numerical results show that its cladding pattern is more favorable in the excitation of SPR effects. Experimental results show that the cladding mode of MOF is very sensitive to curvature changes, thus giving it a great advantage in bending measurements. Its sensitivity reaches 0.18 dB/m-1, and linearity reaches 0.995 in the curvature range of 0-30 m-1. The sensor has the advantages of high sensitivity, low temperature and axial strain crosstalk, compact structure, and easy fabrication, which make it attractive in the field of bending sensing.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3