Terahertz tunable optically induced lattice in the magnetized monolayer graphene

Author:

Wen Feng1,Zhang Shaowei1,Hui Sijia1,Ma Hanghang2,Wang Sijia1ORCID,Ye Huapeng3ORCID,Wang Wei1,Zhu Tianfei1,Zhang Yanpeng1ORCID,Wang Hongxing1

Affiliation:

1. Xi’an Jiaotong University

2. Peking University

3. South China Normal University

Abstract

The emergence of monolayer material has opened new avenue for manipulating light beyond the capability of traditional optics. However, controlling the terahertz (THz) wave with magnetized monolayer graphene based on multi-beam interference method is interesting but yet reported. In this article, we report an optically induced lattice with tunability in THz by interfering four plane waves in the magnetized monolayer graphene. We show that the optical properties of the induced optical lattice can be efficiently tuned by varying the optical parameter of the interference beams (i.e., the photon detuning and the Rabi frequency), resulting in both amplitude- and phase-type lattice. Based on Fraunhofer diffraction theory, it is found that the far-field diffraction efficiency is adjustable via varying the probe detuning. Moreover, it is also found that the probe field is diffracted into the high-order direction when the photon detuning is within the triangle-like anti-centrosymmetric region. Such a tunable THz lattice may provide a versatile tool for all-optical switching at the few photons level and paves the way for next generation high-speed wireless communication.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

the Postdoctoral Science Foundation

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3