Tired and stressed: direct holographic quasi-static stretching of aging echinocytes and discocytes in plasma using optical tweezers [Invited]

Author:

Stilgoe Alexander B.1ORCID,Kashchuk Anatolii V.2,Balanant Marie-Anne3,Santangelo Deborah3,Nieminen Timo A.,Sauret Emilie3,Flower Robert3,Rubinsztein-Dunlop Halina1

Affiliation:

1. University of Queensland

2. University of Florence

3. Queensland University of Technology

Abstract

Red blood cells (RBCs) undergo a progressive morphological transformation from smooth biconcave discocytes into rounder echinocytes with spicules on their surface during cold storage. The echinocytic morphology impacts RBCs’ ability to flow through narrow sections of the circulation and therefore transfusion of RBC units with a high echinocytic content are thought to have a reduced efficiency. We use an optical tweezers-based technique where we directly trap and measure linear stiffness of RBCs under stress without the use of attached spherical probe particles or microfluidic flow to induce shear. We study RBC deformability with over 50 days of storage performing multiple stretches in blood plasma (serum with cold agglutinins removed to eliminate clotting). In particular, we find that discocytes and echinocytes do not show significant changes in linear stiffness in the small strain limit (∼20% change in length) up to day 30 of the storage period, but do find differences between repeated stretches. By day 50 the linear stiffness of discocytes had increased to approximately that measured for echinocytes throughout the entire period of measurements. These changes in stiffness corresponded to recorded morphological changes in the discocytes as they underwent storage lesion. We believe our holographic trapping and direct measurement technique has applications to directly control and quantify forces that stretch other types of cells without the use of attached probes.

Funder

Australian Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3