Machine vision system based on a coupled image segmentation algorithm for surface-defect detection of a Si3N4 bearing roller

Author:

Liao Dahai123,Yin Mingshuai12,Luo Hongbin12,Li Jun12,Wu Nanxing123

Affiliation:

1. Jingdezhen Ceramic University

2. Laboratory of Ceramic Material Processing Technology Engineering

3. National Engineering Research Center for Domestic & Building Ceramics

Abstract

Defect detection is a critical way to ensure quality for silicon-nitride-bearing rollers. To improve detection efficiency and precision for silicon-nitride-bearing roller surface defects, in this paper, a novel machine vision system for the detection of its surface defects is designed. This method combines image segmentation and wavelet fusion to extract features from an image. In turn, the features are used in a classifier based on the K -nearest neighbor for defect classification. The optimized image segmentation algorithm that is combined with wavelet fusion is the innovation of the proposed method. It is evaluated using different defect images acquired by the machine vision system. Our experiments show that the proposed machine vision system’s precision in anomaly detection of the silicon-nitride-bearing roller surface can achieve 98.5%; further, its classification precision of various defects is greater than 91.5%. It has resulted in a solution for the automatic identification of the silicon-nitride-bearing roller surface defects.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Youth Science Foundation of Jiangxi Province

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3