Affiliation:
1. Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)
2. Dianov Fiber Optics Research Center
3. Devyatykh Institute of Chemistry of High-Purity Substances of the Russian Academy of Sciences
Abstract
We report the 1.3/1.4 µm dual-wave band dissipative soliton resonance (DSR) in a passively mode-locked bismuth-doped phosphosilicate fiber (Bi-PSF) laser. The low-water-peak Bi-PSF with two bismuth active centers associated with silicon and phosphorus supports the O+E-band gain. Using a 1239 nm home-made Raman fiber laser as pump source and nonlinear amplifying loop mirror for initiating mode-locking, stable DSR operation at 1343 and 1406 nm is achieved with the spectral bandwidth of 12 and 16 nm. The pulse duration with the pump power increases from 62 to 270 ps with a repetition frequency of 4.069 MHz. The average power is 11.05 mW corresponding to the maximum energy of 2.7 nJ. This is, to the best of our knowledge, the first demonstration of a mode-locked fiber laser in the ∼1.38 µm water absorption band and the O+E dual-wave band operation for applications in all-spectral-band communications, bio-medical imaging, and terahertz difference frequency generation.
Funder
Fundamental Research Funds for the Central Universities
National Science Funds for Excellent Young Scholars
Fundamental Research Funds for the Central Universities under Grant
Natural Science Foundation of Fujian Province
National Natural Science Foundation of China
Fujian Natural Science Foundation Youth project
Subject
Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献