Affiliation:
1. Aerospace Information Research Institute
2. Chinese Academy of Sciences
3. University of Chinese Academy of Sciences
Abstract
Slope-dependent error often occurs in the coherence scanning interferometry (CSI) measurement of functional engineering surfaces with complex geometries. Previous studies have shown that these errors can be corrected through the characterization and phase inversion of the instrument’s three-dimensional (3D) surface transfer function. However, since CSI instrument is usually not completely shift-invariant, the 3D surface transfer function characterization and correction must be repeated for different regions of the full field of view, resulting in a long computational process and a reduction of measurement efficiency. In this work, we introduce a machine learning approach based on a deep neural network that is trainable for slope-dependent error correction in CSI. Our method leverages a deep neural network to directly learn errors characteristics from simulated surface measurements provided by a previously validated physics-based virtual CSI method. The experimental results demonstrate that the trained network is capable of correcting the surface height map with 1024 × 1024 sampling points within 0.1 seconds, covering a 178 µm field of view. The accuracy is comparable to the previous phase inversion approach while the new method is two orders of magnitude faster under the same computational condition.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Shanghai High-Tech project
International Partnership Program of Chinese Academy of Sciences
Ministry of Science and Technology of the People's Republic of China
Fundamental Research Funds for the Central Universities
University of Chinese Academy of Sciences
Fusion Foundation of Research and Education of CAS
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献