Mathematical model of potential distribution in a pinned photodiode of an indirect time of flight CMOS image sensor

Author:

Shi Xiaolin,Li Xinyao,Mao Yujia,Ren Ying,Zhang Ruixin,Zhao Chenyang,Xu Jiangtao1,Nie Kaiming1,Gao Zhiyuan2

Affiliation:

1. Tianjin University

2. Tianjin Hypersense Microelectronics Technology Ltd

Abstract

This paper focuses on the rapid charge transfer of lock-in pixels in time of flight 3D image sensors. Through the principal analysis, a mathematical model of potential distribution in a pinned photodiode (PPD) in different comb shapes is established. Based on this model, the influence of different comb shapes on the accelerating electric field in PPD is analyzed. The semiconductor device simulation tool SPECTRA is applied to verify the effectiveness of the model, and the simulation results are analyzed and discussed. When the width of comb tooth is in narrow and medium range, the potential changes more obviously with the increase of comb tooth angle α, whereas the potential becomes stable even if the comb tooth angle α increases sharply with the wide comb tooth width. The proposed mathematical model contributes to instructing the design of pixel transferring electrons rapidly and resolving image lag.

Funder

National College Students Innovation and Entrepreneurship Training Program

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3