Crossover from exciton-polariton condensation to photon lasing in an optical trap

Author:

Pieczarka M.1ORCID,Biegańska D.1,Schneider C.2,Höfling S.3,Klembt S.3,Sęk G.1,Syperek M.1

Affiliation:

1. Wrocław University of Science and Technology

2. Institute of Physics, University of Oldenburg

3. University of Würzburg

Abstract

Optical trapping has been proven to be an effective method of separating exciton-polariton condensates from the incoherent high-energy excitonic reservoir located at the pumping laser position. This technique has significantly improved the coherent properties of exciton-polariton condensates, when compared to a quasi-homogeneous spot excitation scheme. Here, we compare two experimental methods on a sample, where a single spot excitation experiment allowed us only to observe photonic lasing in the weak coupling regime. In contrast, the ring-shaped excitation resulted in the two-threshold behavior, where an exciton-polariton condensate manifests itself at the first and photon lasing at the second threshold. Both lasing regimes are trapped in an optical potential created by the pump. We interpret the origin of this confining potential in terms of repulsive interactions of polaritons with the reservoir at the first threshold and as a result of the excessive free-carrier induced refractive index change of the microcavity at the second threshold. This observation offers a way to achieve multiple phases of photonic condensates in samples, e.g., containing novel materials as an active layer, where two-threshold behavior is impossible to achieve with a single excitation spot.

Funder

Narodowe Centrum Nauki

Narodowa Agencja Wymiany Akademickiej

State of Bavaria

Deutsche Forschungsgemeinschaft

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3