Near-infrared speckle wavemeter based on nonlinear frequency conversion

Author:

Sun Yiwei,Ni Fengchao,Huang Yiwen,Liu Haigang,Chen Xianfeng12

Affiliation:

1. Shanghai Research Center for Quantum Sciences

2. Shandong Normal University

Abstract

The wavemeter is an important instrument for spectrum analysis, widely used in spectral calibration, remote sensing, atomic physics, and high-precision metrology. However, near-infrared (NIR) wavemeters require infrared-sensitive detectors that are expensive and less sensitive compared to silicon-based visible light detectors. To circumvent these limitations, we propose an NIR speckle wavemeter based on nonlinear frequency conversion. We combine a scattering medium and the deep learning technique to invert the nonlinear mapping of the NIR wavelength and speckles in the visible wave band. With the outstanding performance of deep learning, a high-precision wavelength resolution of 1 pm is achievable in our experiment. We further demonstrate the robustness of our system and show that the recognition of power parameters and multi-spectral lines is also feasible. The proposed method offers a convenient and flexible way to measure NIR light, and it offers the possibility of cost reduction in miniaturized wavemeter systems.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3