Accurate determination of plasma temperature and electron density using a reference target: one-point calibration LIBS elemental analysis of alloy samples

Author:

Zeng Huiling,Li RunhuaORCID,Chen YuqiORCID

Abstract

Elemental analysis of aluminum alloy samples with calibration-free laser-induced breakdown spectroscopy (CF-LIBS) encounters two difficulties: the inconvenience of determining accurate temperature and electron density of the plasma and the influence of self-absorption of the observed aluminum lines. To solve this problem, target-enhanced orthogonal double-pulse laser-induced breakdown spectroscopy in the reheating regime combined with the one-point calibration method was proposed in this work. A mixture of copper powders and KHCO3 grains was pressed to a pellet and used as the target. Accurate determination of plasma temperature and electron density can be obtained using a reference target. The plasma temperature could be determined with Saha–Boltzmann plot of copper, and the electron density of the plasma could be determined according to the Stark broadening of the H α line of hydrogen. Aluminum alloy samples were analyzed with a relative error of better than 0.02% for a major element. This approach provides a convenient way to determine the temperature and electron density of the plasma more accurately and is able to reduce the influence of self-absorption, which is helpful for realizing quantitative elemental analysis of different samples while using a calibration-free algorithm.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3