Affiliation:
1. Nanjing University of Information Science and Technology
2. The University of Kansas
3. Chinese Academy of Sciences
Abstract
Launching, tracking, and controlling picosecond acoustic (PA) pulses are fundamentally important for the construction of ultrafast hypersonic wave sources, ultrafast manipulation of matter, and spatiotemporal imaging of interfaces. Here, we show that GHz PA pulses can be all-optically generated, detected, and manipulated in a 2D layered MoS2/glass heterostructure using femtosecond laser pump–probe. Based on an interferometric model, PA pulse signals in glass are successfully decoupled from the coexisting temperature and photocarrier relaxation and coherent acoustic phonon (CAP) oscillation signals of MoS2 lattice in both time and frequency domains. Under selective interface excitations, temperature-mediated interfacial phonon scatterings can compress PA pulse widths by about 50%. By increasing the pump fluences, anharmonic CAP oscillations of MoS2 lattice are initiated. As a result, the increased interatomic distance at the MoS2/glass interface that reduces interfacial energy couplings can markedly broaden the PA pulse widths by about 150%. Our results open new avenues to obtain controllable PA pulses in 2D semiconductor/dielectric heterostructures with femtosecond laser pump–probe, which will enable many investigations and applications.
Funder
National Key Research and Development Program of China
Natural Science Foundation of Jiangsu Province
National Natural Science Foundation of China
Social Development Program Fund of Jiangsu Province
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献