Affiliation:
1. Xi’an Polytechnic University
2. Zhejiang Normal University
Abstract
Thermally expanded core (TEC) technology is an effective method of high-power fiber lasers. Miniaturization is also a major challenge for high-power lasers. We have proposed a miniaturized mode-locker based on TEC fiber and
M
o
T
e
2
-polyvinyl alcohol (PVA) film. The proposed mode-locker is consisting of two TEC ferrules, a piece of
M
o
T
e
2
-PVA film and a ceramic sleeve. The length of the proposed device is about 20 mm, and its outer diameter is about 2 mm. The relations between heating time, heating temperature, and mode field diameter (MFD) have been numerically simulated. The bending loss with respect to MFD has also been analyzed. The simulation results have revealed the trade-off relation between maximal tolerable intensity and low cavity loss, which means that there is an optimal MFD corresponding to optimal heating time and heating temperature. The proposed mode-locker has been applied in an integrated fiber laser, which has emitted ultrafast soliton with 3 times intensity larger than that of conventional sandwiched-type saturable absorber. The proposed mode-locker and fiber laser will find important applications in laser processing, laser ranging, and optical communication.
Funder
Natural Science Foundation of Shaanxi Province
National Natural Science Foundation of China
Special Scientific Research Project in Shaanxi Province Department of Education
National Key Research and Development Program of China
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献