Fano resonance in a microring resonator with a micro-reflective unit

Author:

Wang Jun,Lin Jie,Jin Peng,Liu ShutianORCID,Zhou KeyaORCID

Abstract

Fano resonance is considered to be a promising approach for integrated sensing. However, achieving and controlling Fano resonance lineshapes on ultra-compact chips remains a challenge. In this article, we propose a theoretic model based on the transfer matrix method (TMM) to quantitatively interpret the impact of a micro-reflective unit (MRU) etched in the straight waveguide of a microring resonator (MRR). Numerical calculations and FDTD simulations indicate that the size and position of the MRU can be used to control the Fano resonance lineshape. Since the MRU is etched in the coupling region, the reflection caused by the MRU will significantly enhance the intensity of the counter-clockwise (CCW) mode in the microring. When applied to a single nanoparticle sensing, clockwise (CW) and CCW modes will couple due to a single nanoparticles or rough cavity walls, resulting in a sharp shift and split of the Fano lineshape. The proposed model for single nanoparticle sensing is described by the scattering matrix, and the calculations show a well matches with FDTD simulations. The results show that the model proposed in this paper provides a new theoretical basis for controlling Fano resonance lineshape and presents a new approach for the integrated sensing of silicon photonic devices with high sensitivity.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3