Abstract
Computing locations and extent of images, except in the most trivial configurations or special cases, is a complex task. Even rays emanating from a point source and passing through an optical system generally fail to converge at a single image point, highlighting the care needed to establish image locations. We use three approaches to study image formation in a simple configuration, that of a point source following reflection from a spherical concave mirror. We calculate the caustic surfaces, compute cross sections of flux densities on image surfaces, and compare the results with experimentally generated light intensity fields. One of the two caustic surfaces is one dimensional while the other forms a surface. The latter undergoes a metamorphosis from a distorted cone to an open surface as the source is moved away from the axis. Cross sections of the caustic surfaces with an image plane are found to coincide with peaks in the flux density. Experimental studies validate these conclusions.
Subject
Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献