Diverse ranking metamaterial inverse design based on contrastive and transfer learning

Author:

Deng Zhengwei,Li Yuxiang1,Li Yicheng,Wang Yiyuan,Li Wenjia1,Zhu Zheng1,Guan Chunying1,Shi Jinhui1ORCID

Affiliation:

1. Harbin Engineering University

Abstract

Metamaterials, thoughtfully designed, have demonstrated remarkable success in the manipulation of electromagnetic waves. More recently, deep learning can advance the performance in the field of metamaterial inverse design. However, existing inverse design methods based on deep learning often overlook potential trade-offs of optimal design and outcome diversity. To address this issue, in this work we introduce contrastive learning to implement a simple but effective global ranking inverse design framework. Viewing inverse design as spectrum-guided ranking of the candidate structures, our method creates a resemblance relationship of the optical response and metamaterials, enabling the prediction of diverse structures of metamaterials based on the global ranking. Furthermore, we have combined transfer learning to enrich our framework, not limited in prediction of single metamaterial representation. Our work can offer inverse design evaluation and diverse outcomes. The proposed method may shrink the gap between flexibility and accuracy of on-demand design.

Funder

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Heilongjiang Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3