Exceptional point proximity-driven mode-locking in coupled microresonators

Author:

Imamura Riku,Fujii ShunORCID,Nakashima Ayata,Tanabe TakasumiORCID

Abstract

We show theoretically and numerically that mode-locking is feasible with a coupled-cavity system with gain and loss, notably, without any natural saturable absorber. We highlight that in the vicinity of the exceptional point, system Q exhibits substantial modulation even with minor refractive index changes and a minimal Kerr effect contribution. Leveraging this unique behavior, we propose an unprecedented approach wherein the lossy auxiliary cavity functions as an efficient artificial saturable absorber, thus facilitating mode-locking. This approach is not only novel, but also presents considerable advantages over conventional systems where both gain and saturable absorption are contained within a single microcavity. These benefits include reduced operational power and ease of post-adjustment, achievable through the manipulation of the coupling strength between the two microcavities.

Funder

Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Japan Science and Technology Agency

Mizuho Foundation for the Promotion of Sciences

The Murata Science Foundation

Keio University Program for the Promotion of Next Generation Research Projects

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3