Aging of deep venous thrombosis in-vivo using polarization sensitive optical coherence tomography

Author:

Jones Georgia L.1ORCID,Albadawi Hassan2,Hariri Lida P.1,Bouma Brett E.1,Oklu Rahmi2,Villiger Martin1ORCID

Affiliation:

1. Massachusetts General Hospital

2. Division of Vascular and Interventional Radiology

Abstract

Deep venous thrombosis (DVT) is a medical condition with significant post-event morbidity and mortality coupled with limited treatment options. Treatment strategy and efficacy are highly dependent on the structural composition of the thrombus, which evolves over time from initial formation and is currently unevaluable with standard clinical testing. Here, we investigate the use of intravascular polarization-sensitive optical coherence tomography (PS-OCT) to assess thrombus morphology and composition in a rat DVT model in-vivo, including changes that occur over the thrombus aging process. PS-OCT measures tissue birefringence, which provides contrast for collagen and smooth muscle cells that are present in older, chronic clots. Thrombi in the inferior vena cava of two cohorts of rats were imaged in-vivo with intravascular PS-OCT at 24 hours (acute, nrats = 3, 73 cross-sections) or 28 days (chronic, nrats = 4, 41 cross-sections) after thrombus formation. Co-registered histology was labelled by an independent pathologist to establish ground-truth clot composition. Automated analysis of OCT cross-sectional images differentiated acute and chronic thrombi with 97.6% sensitivity and 98.6% specificity using a linear discriminant model comprised of both polarization and conventional OCT metrics. These results support PS-OCT as a highly sensitive imaging modality for the assessment of DVT composition to differentiate acute and chronic thrombi. Intravascular PS-OCT imaging could be integrated with advanced catheter-based treatment strategies and serve to guide therapeutic decision-making and deployment, by offering an accurate assessment of DVT patients in real time.

Funder

National Institutes of Health

Office of Graduate Education, Massachusetts Institute of Technology

Takeda Pharmaceuticals U.S.A.

Terumo BCT

National Institute of Biomedical Imaging and Bioengineering

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3