Optimized sinusoidal patterns for high-performance computational ghost imaging

Author:

Yu Wangtao,Li DekuiORCID,Guo Kai,Yin Zhiping,Guo ZhongyiORCID

Abstract

Computational ghost imaging (CGI) can reconstruct scene images by two-order correlation between sampling patterns and detected intensities from a bucket detector. By increasing the sampling rates (SRs), imaging quality of CGI can be improved, but it will result in an increasing imaging time. Herein, in order to achieve high-quality CGI under an insufficient SR, we propose two types of novel sampling methods for CGI, to the best of our knowledge, cyclic sinusoidal-pattern-based CGI (CSP-CGI) and half-cyclic sinusoidal-pattern-based CGI (HCSP-CGI), in which CSP-CGI is realized by optimizing the ordered sinusoidal patterns through “cyclic sampling patterns,” and HCSP-CGI just uses half of the sinusoidal pattern types of CSP-CGI. Target information mainly exists in the low-frequency region, and high-quality target scenes can be recovered even at an extreme SR of 5%. The proposed methods can significantly reduce the sampling number and real-time ghost imaging possible. The experiments demonstrate the superiority of our method over state-of-the-art methods both qualitatively and quantitatively.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3