DIC measurement for large-scale structures based on adaptive warping image stitching

Author:

Sun Long1,Tang Chen1,Xu Min1,Lei Zhenkun2

Affiliation:

1. Tianjin University

2. Dalian University of Technology

Abstract

As a representative method of optical non-interference measurement, digital image correlation (DIC) technology is a non-contact optical mechanics method that can measure the displacement and deformation of the whole field. However, when the measurement range of the field is too large, the existing DIC method cannot measure the full-field strain accurately, which limits the application of the DIC measurement in the case of a large size and wide-field view. To address this issue, a DIC measurement method for large-scale structures based on adaptive warping image stitching is proposed in this paper. First, multiple adjacent high-resolution images are collected at different locations of large-scale structures. Secondly, the collected images are stitched by applying the adaptive warping image stitching algorithm to obtain a panoramic image. Finally, the DIC algorithm is applied to solve the whole deformation field. In the experiments, we first verify the feasibility of the proposed method for image matching and fusion through the numerical simulation of a rigid body translation experiment. Then the accuracy and robustness of the proposed method in practical application are verified by rigid body translation and a three-point bending experiment. The experimental results demonstrate that the measurement range of DIC is improved significantly with the adaptive warping image stitching algorithm.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3