Affiliation:
1. INL - International Iberian Nanotechnology Laboratory
Abstract
Quantum and neuromorphic computational platforms in integrated photonic circuits require next-generation optical functionalities. Often, increasingly complex on-chip light-routing that allow superpositions not attainable by planar technologies are paramount e.g. for artificial neural networks. Versatile 3D waveguides are achievable via two-photon polymerization (TPP)-based microprinting. Here, a 3D morphology prediction tool which considers experimental TPP parameters, is presented, enabling on-chip 3D waveguide performance simulations. The simulations allow reducing the cost-intensive systematic experimental optimization process. Fabricated 3D waveguides show optical transmission properties in agreement with simulations, demonstrating that the developed morphology prediction methodology is beneficial for the development of versatile on-chip and potentially inter-chip photonic interconnect technology.
Funder
European Commission
ERDF (INTERREG V-A España-Portugal
Subject
Atomic and Molecular Physics, and Optics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献