Modeling sea ice albedo and transmittance measurements with a fully-coupled radiative transfer model

Author:

Jin ZhonghaiORCID,Ottaviani Matteo1,Sikand Monika23

Affiliation:

1. Terra Research

2. Columbia University

3. Stevens Institute of Technology

Abstract

A rigorous treatment of the sea ice medium has been incorporated in the advanced Coupled Ocean-Atmosphere Radiative Transfer (COART) model. The inherent optical properties (IOPs) of brine pockets and air bubbles over the 0.25-4.0 µm spectral region are parameterized as a function of the sea ice physical properties (temperature, salinity and density). We then test the performance of the upgraded COART model using three physically-based modeling approaches to simulate the spectral albedo and transmittance of sea ice, and compare them with measurements collected during the Impacts of Climate on the Ecosystems and Chemistry of the Arctic Pacific Environment (ICESCAPE) and the Surface Heat Budget of the Arctic Ocean (SHEBA) field campaigns. The observations are adequately simulated when at least three layers are used to represent bare ice, including a thin surface scattering layer (SSL), and two layers to represent ponded ice. Treating the SSL as a low-density ice layer yields better model-observation agreement than treating it as a snow-like layer. Sensitivity results indicate that air volume (which determines the ice density) has the largest impact on the simulated fluxes. The vertical profile of density drives the optical properties but available measurements are scarce. The approach where the scattering coefficient for the bubbles is inferred in lieu of density leads to essentially equivalent modeling results. For ponded ice, the albedo and transmittance in the visible are mainly determined by the optical properties of the ice underlying the water layer. Possible contamination from light-absorbing impurities, such as black carbon or ice algae, is also implemented in the model and is able to effectively reduce the albedo and transmittance in the visible spectrum to further improve the model-observation agreement.

Funder

National Aeronautics and Space Administration

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3