Emerging devices and packaging strategies for electronic-photonic AI accelerators: opinion

Author:

Peserico Nicola1,Ferreira de Lima Thomas23,Prucnal Paul3,Sorger Volker J.1ORCID

Affiliation:

1. George Washington University

2. NEC Laboratories America Inc

3. Princeton University

Abstract

The field of mimicking the structure of the brain on a chip is experiencing interest driven by the demand for machine intelligent applications. However, the power consumption and available performance of machine-learning (ML) accelerating hardware still leave much desire for improvement. In this letter, we share viewpoints, challenges, and prospects of electronic-photonic neural network (NN) accelerators. Combining electronics with photonics offers synergistic co-design strategies for high-performance AI Application-specific integrated circuits (ASICs) and systems. Taking advantages of photonic signal processing capabilities and combining them with electronic logic control and data storage is an emerging prospect. However, the optical component library leaves much to be desired and is challenged by the enormous size of photonic devices. Within this context, we will review the emerging electro-optic materials, functional devices, and systems packaging strategies that, when realized, provide significant performance gains and fuel the ongoing AI revolution, leading to a stand-alone photonics-inside AI ASIC ‘black-box’ for streamlined plug-and-play board integration in future AI processors.

Publisher

Optica Publishing Group

Subject

Electronic, Optical and Magnetic Materials

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in machine learning optimization for classical and quantum photonics;Journal of the Optical Society of America B;2024-02-01

2. Grand challenges in neuromorphic photonics and photonic computing;Frontiers in Photonics;2024-01-29

3. Programmable photonic chips and applications;Active Photonic Platforms (APP) 2023;2023-10-04

4. PhotoFourier: silicon photonics joint transfer correlator for convolution neural network;Optics and Photonics for Information Processing XVII;2023-10-04

5. Artificial neural networks for photonic applications—from algorithms to implementation: tutorial;Advances in Optics and Photonics;2023-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3