Optical degradation correction of manufacturing-perturbed glass-plastic hybrid lens systems via a joint hardware-software optimization framework

Author:

Zhou Jingwen,Chen Bingkun,Yan JiapuORCID,Ren Zheng,Zhang Wenguan,Feng Huajun,Chen YuetingORCID,Bian Meijuan

Abstract

Glass-plastic hybrid lens systems are increasingly critical in various optical applications due to their unique advantages and growing demands. Due to limitations in manufacturing processes and costs, the yield rate of glass-plastic hybrid lens systems in mass production struggles to match that of mature all-plastic ones. In this work, we propose a pioneering joint hardware-software optimization framework designed for correcting optical degradation in manufacturing-perturbed glass-plastic hybrid lens systems. Our framework begins with the establishment of a differentiable imaging simulation system that is capable of simulating various manufacturing errors. This system facilitates the preliminary estimation of manufacturing deviations across individual lenses without precise measurements. Subsequently, from the perspective of the hardware assembly process, we integrate active alignment of the glass aspherical lens to mitigate degradation caused by these deviations. Moreover, we introduce a novel and lightweight degradation correction network as post-processing software to address residual optical degradation without fine-tuning for each manufacturing-perturbed lens system, significantly reducing deployment costs for mobile devices. Extensive experiments validate the efficacy of our joint hardware-software optimization framework, showing substantial improvements in imaging quality and enhanced yield rates in mass production. Overall, our framework establishes a new paradigm for optical degradation correction in glass-plastic hybrid lens systems by synergizing the front-end lens assembly process with the back-end degradation correction method. This new paradigm represents an inaugural effort within the optical engineering domain.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3