High-speed adaptive photoacoustic microscopy

Author:

Li Linyang,Qin Wei,Li Tingting,Zhang Junning,Li Baochen,Xi Lei12ORCID

Affiliation:

1. Southern University of Science and Technology

2. Shenzhen Bay Laboratory

Abstract

Optical-resolution photoacoustic microscopy (OR-PAM) is capable of observing the distribution of optical absorbers inside bio-tissues with a high spatial resolution of micrometers. Unfortunately, due to the employment of a tight optical focus, it suffers from a limited depth of field (DOF), making it challenging to achieve high-resolution imaging of targets with arbitrary surfaces. Here, we propose a high spatiotemporal adaptive photoacoustic focusing mechanism through integrating a high-speed optical focuser, a time-of-flight contour deriving algorithm, and the rotary-scanning photoacoustic microscopy. The developed system, named high-speed adaptive photoacoustic microscopy (HA-PAM), features an ultrashort focus-shifting time of 5 ms and an enlarged DOF of up to 5 mm. With the assistance of the proposed mechanism, we can achieve a homogeneous lateral resolution of 6 μm over a 10 mm circular imaging domain within 5 s. We demonstrate the advantages of HA-PAM through imaging phantoms with curved surfaces, subcutaneous tumor-bearing mice, resected rabbit kidneys, and pulsating mouse brains. The imaging results suggest that this approach provides a high and consistent spatial resolution for imaging bio-tissues with arbitrary surfaces without sacrificing the imaging speed, and has the potential to extend the fundamental and clinical applications of OR-PAM.

Funder

National Natural Science Foundation of China

Guangdong Science and Technology Department

Guangdong Provincial Department of Education

Guangdong Provincial Key Laboratory of Advanced Biomaterials

Shenzhen Science and Technology Program

Start-up grant from Southern University of Science and Technology

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3