MEMS-based portable confocal Raman spectroscopy rapid imaging system

Author:

Zhang Guozhuo1,Wang Xu1,Zheng Dezhi1,Cui Han1,Wang Yun1

Affiliation:

1. Beijing Institute of Technology

Abstract

Aiming at the miniaturization and rapid imaging requirements of a portable confocal Raman system, a MEMS-based portable confocal Raman spectroscopy rapid imaging method is proposed in this study. This method combines the dual 2D MEMS mirror scanning method and the grid-by-grid scanning method. The dual 2D MEMS mirror scanning method is used for the miniaturization design of the system, and the grid-by-grid scanning method is used for rapid imaging of Raman spectroscopy. Finally, the rapid imaging and miniaturization design of a portable confocal Raman spectroscopy system are realized. Based on this method, a portable confocal Raman spectroscopy rapid imaging system with an optical probe size of just 98mm×70mm×40mm is constructed. The experimental results show that the imaging speed of the system is 45 times higher than that of the traditional point-scan confocal Raman system, and the imaging speed can be further improved according to the requirements. In addition, the system is used to swiftly identify agate ore, and the material composition distribution image over a 126µm2×126µm2 region is obtained in just 16 min. This method provides a new solution for the rapid imaging and miniaturization design of the confocal Raman system, as well as a new technical means for rapid detection in deep space exploration, geological exploration, and field detection.

Funder

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Beijing Institute of Technology Research Fund Program for Young Scholars

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3