On the validity of two-flux and four-flux models for light scattering in translucent layers: angular distribution of internally reflected light at the interfaces

Author:

Gautheron Arthur1ORCID,Clerc Raphaël1,Duveiller Vincent1,Simonot Lionel2ORCID,Montcel BrunoORCID,Hébert Mathieu1

Affiliation:

1. Université Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School

2. Université de Poitiers

Abstract

Optical characterization and appearance prediction of translucent materials are required in many fields of engineering such as computer graphics, dental restorations or 3D printing technologies. In the case of strongly scattering materials, flux transfer models like the Kubelka-Munk model (2-flux) or the Maheu’s 4-flux model have been successfully used to this aim for decades. However, they lead to inaccurate prediction of the color variations of translucent objects of different thicknesses. Indeed, as they rely on the assumption of lambertian fluxes at any depth within the material, they fail to model the internal reflectance at the interfaces, penalizing the accuracy of the optical parameter extraction. The aim of this paper is to investigate the impact of translucency on light angular distribution and corresponding internal reflectances by the mean of the radiative transfer equation, which describes more rigorously the impact of scattering on light propagation. It turns out that the light angular distribution at the bordering interfaces is often far from being lambertian, and that the internal reflectance may vary significantly according to the layer’s thickness, refractive index, scattering and absorption coefficients and scattering anisotropy. This work enables to better understand the impact of scattering within a translucent layer and also invites to revisit the well-known Saunderson correction used in 2- or 4-flux models.

Funder

EUR Manutech Sleight

France Life Imaging

LabEx PRIMES

Publisher

Optica Publishing Group

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3