Abstract
Digital in-line holography is a versatile method to obtain lens-less images of small particles, such as aerosol particles, ranging from several to over one hundred microns in size. It has been shown theoretically, and verified by measurement, that a particle’s extinction cross section can also be obtained from a digital hologram. The process involves a straightforward integration, but if noise is present it fails to give accurate results. Here we present a method to reduce the noise in measured holograms of single particles for the purpose of rendering the cross-section estimation more effective. The method involves masking the complex-valued particle image-amplitude obtained from a noisy hologram followed by a Fresnel transformation to generate a new noise-reduced hologram. Examples are given at two wavelengths, 440 nm and 1040 nm, where the cross section is obtained for a micro-sphere particle and several non-spherical particles approximately 50 microns in size.
Funder
Army Research Office
National Science Foundation
Air Force Office of Scientific Research
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献