Abstract
It is commonly assumed that for low-intensity short optical pulses far from resonance, the third-order optical nonlinear response is instantaneous. We solve the three-dimensional time-dependent Schrödinger equation for the hydrogen atom and show that this is not the case: the polarization is not simply proportional to the cube of the electric field even at low intensities. We analyze the fundamental-frequency and third-harmonic nonlinear susceptibilities of hydrogen, investigate their dependence on intensity, and find that the delays in the Kerr response rapidly approach the femtosecond time-scale at higher intensities, while the delays in the third harmonic generation remain much lower. We also propose an experimental scheme to detect and characterize the above effects.
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献