Abstract
A symmetry tunable triangular waveform photonic generator based on channelized frequency synthesis is proposed and studied. The generator adopts a multichannel system architecture and harmonic amplitude control algorithm to physically isolate each subchannel. In a single subchannel, quadrature phase shift keying modulation and coherent dual-wavelength balanced detection are used to realize optical upconversion and suppress mixing interference in the process of frequency conversion. Therefore, the model has the characteristics of a high-order Fourier series fitting tunable function waveform output. The analysis results show that the Fourier series harmonic coefficients can be adjusted flexibly by the multivariable joint regulation algorithm. The relationship between the variables is analyzed and discussed. The feasibility of the scheme is verified by optical simulation; when the rms error (RMSE) ≤0.03, a 20%–80% tunable symmetry triangular waveform can be obtained.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献