Imaging fine structures of the human trabecular meshwork in vivo using a custom design goniolens and OCT gonioscopy

Author:

Carmichael-Martins AlessandraORCID,Gast Thomas J.,King Brett J.,Walker Brittany R.,Sobczak MarcelinaORCID,Burns Stephen A.ORCID

Abstract

The trabecular meshwork (TM), located within the iridocorneal angle, is a target for many glaucoma treatments aimed at controlling intraocular pressure. However, structural variations between individuals are poorly understood. We propose a newly designed gonioscopic lens optimized for high-resolution imaging to image fine structures of the human TM in vivo. The body of the new lens is index-matched to the human cornea and includes a choice of two gonioscopic mirrors (59° and 63°) and matching air-spaced doublets placed on the anterior surface of the goniolens. The new design allows a diffraction-limited image plane at the iridocorneal angle structures. The goniolens design was built and then placed on the subjectś eyes coupled to the cornea with goniogel and a 3D adjustable mount. Images were obtained using a commercially available OCT device (Heidelberg Spectralis). The optical resolution was measured in a model eye as 40.32 and 45.25 cy/mm respectively for each mirror angle. In humans, dense OCT scans with minimum spacing oriented tangential to the iris and ICA were performed on 7 healthy subjects (23-73 yrs). The TM was successfully imaged in all subjects. The custom goniolens improved the contrast of the uveoscleral meshwork structures and corneoscleral meshwork revealing limbus parallel striations, not visible with previous goniolens designs. Transverse OCT images were constructed along the segmentation line, providing an enface image of the TM structures including corneoscleral beams, previously only imaged in vivo using custom adaptive optics systems.

Funder

BrightFocus Foundation

National Center for Advancing Translational Sciences

National Eye Institute

Alcon Research Institute

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3