Affiliation:
1. The University of Western Australia
2. Australian Research Council Centre for Personalised Therapeutics Technologies
Abstract
Quantitative micro-elastography (QME) is a compression-based optical coherence elastography technique capable of measuring the mechanical properties of tissue on the micro-scale. As QME requires contact between the imaging window and the sample, the presence of friction affects the accuracy of the estimated elasticity. In previous implementations, a lubricant was applied at the contact surfaces, which was assumed to result in negligible friction. However, recently, errors in the estimation of elasticity caused by friction have been reported. This effect has yet to be characterized and is, therefore, not well understood. In this work, we present a systematic analysis of friction in QME using silicone phantoms. We demonstrate that friction, and, therefore, the elasticity accuracy, is influenced by several experimental factors, including the viscosity of the lubricant, the mechanical contrast between the compliant layer and the sample, and the time after the application of a compressive strain. Elasticity errors over an order of magnitude were observed in the absence of appropriate lubrication when compared to uniaxial compression testing. Using an optimized lubrication protocol, we demonstrate accurate elasticity estimation (<10% error) for nonlinear elastic samples with Young’s moduli ranging from 3 kPa to 130 kPa. Finally, using a structured phantom, we demonstrate that friction can significantly reduce mechanical contrast in QME. We believe that the framework established in this study will facilitate more robust elasticity estimations in QME, as well as being readily adapted to understand the effects of friction in other contact elastography techniques.
Funder
Australian Government
University of Western Australia
Australian Research Council
Department of Health, Government of Western Australia
Subject
Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献