Robust traffic grooming and infrastructure placement in OTN-over-DWDM networks

Author:

Manias Dimitrios MichaelORCID,Naoum-Sawaya Joe1,Shami Abdallah,Javadtalab Abbas2,Hemmati Mahdi2ORCID,You Yuren2

Affiliation:

1. Western University

2. Huawei Technologies Canada Research Center

Abstract

The advent of next-generation networks has revolutionized modern networking practices through its improved service capability as well as its numerous emerging use cases. Coupled with the increasing number of connected devices, 5G and beyond (5G+) network traffic is expected to be increasingly diverse and high in volume. To address the large amount of data exchanged between the 5G+ core and external data networks, optical transport networks (OTNs) with dense wavelength-division multiplexing (DWDM) will be leveraged. In order to prepare for this increase in traffic, network operators (NOs) must develop and expand their existing backbone networks, requiring significant levels of capital expenditures. To this end, the traffic grooming and infrastructure placement problem is critical to supporting NO decisions. The work presented in this paper considers the traffic grooming and infrastructure placement problem for OTN-over-DWDM networks. The dynamicity and diversity of 5G+ network traffic are addressed through the use of robust optimization, allowing for increasing levels of solution conservativeness to protect against various levels of demand uncertainty. Furthermore, a robust traffic grooming and infrastructure placement heuristic (RGIP-H) solution capable of addressing the scalability concerns of the optimization problem formulation is presented. The results presented in this work demonstrate how the tuning of the robust parameters affects the cost of the objective function. Additionally, the ability of the robust solution to protect the solution under demand uncertainty is highlighted when the robust and deterministic solutions are compared during parameter deviation trials. Finally, the performance of the RGIP-H is compared to the optimization models when applied to larger network sizes.

Funder

Huawei Technologies Canada Research Center

Publisher

Optica Publishing Group

Subject

Computer Networks and Communications

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3