Coded aperture compressive temporal imaging via unsupervised lightweight local-global networks with geometric characteristics

Author:

Ge Youran,Qu GangrongORCID,Huang Yuhao,Liu Duo

Abstract

Coded aperture compressive temporal imaging (CACTI) utilizes compressive sensing (CS) theory to compress three dimensional (3D) signals into 2D measurements for sampling in a single snapshot measurement, which in turn acquires high-dimensional (HD) visual signals. To solve the problems of low quality and slow runtime often encountered in reconstruction, deep learning has become the mainstream for signal reconstruction and has shown superior performance. Currently, however, impressive networks are typically supervised networks with large-sized models and require vast training sets that can be difficult to obtain or expensive. This limits their application in real optical imaging systems. In this paper, we propose a lightweight reconstruction network that recovers HD signals only from compressed measurements with noise and design a block consisting of convolution to extract and fuse local and global features, stacking multiple features to form a lightweight architecture. In addition, we also obtain unsupervised loss functions based on the geometric characteristics of the signal to guarantee the powerful generalization capability of the network in order to approximate the reconstruction process of real optical systems. Experimental results show that our proposed network significantly reduces the model size and not only has high performance in recovering dynamic scenes, but the unsupervised video reconstruction network can approximate its supervised version in terms of reconstruction performance.

Funder

National Natural Science Foundation of China

Beijing Jiaotong University

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3