Abstract
We report a gallium phosphide-on-insulator (GaP-OI) photonic platform fabricated by an intermediate-layer bonding process aiming to increase the manufacture scalability in a low-cost manner. This is enabled by the “etch-n-transfer” sequence, which results in inverted rib waveguide structures. The shallow-etched 1.8 µm-wide waveguide has a propagation loss of 23.5 dB/cm at 1550 nm wavelength. Supercontinuum generation based on the self-phase modulation effect is observed when the waveguides are pumped by femtosecond pulses. The nonlinear refractive index of GaP, n2, is extracted to be 1.9 × 10−17 m2/W, demonstrating the great promise of the GaP-OI platform in third-order nonlinear applications.
Funder
Basic and Applied Basic Research Foundation of Guangdong Province
National Natural Science Foundation of China
Wuhan National Laboratory for Optoelectronics
Subject
Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献