High-precision lithography thick-mask model based on a decomposition machine learning method

Author:

Li Ziqi12,Dong Lisong123,Jing Xuyu12,Ma Xu3,Wei Yayi1234

Affiliation:

1. Institute of Microelectronics of Chinese Academy of Sciences

2. University of Chinese Academy of Sciences

3. Guangdong Greater Bay Area Applied Research Institute of Integrated Circuit and Systems

4. Beijing Institute of Technology

Abstract

The thick-mask model had been used to simulate the diffraction behavior of the three-dimensional photomask in optical lithography system. By exploring the edge interference effect that appears in the diffraction near-field (DNF), an improved thick-mask model with high precision is proposed. The diffraction transfer matrix (DTM) is introduced to represent the transformation from the layout pattern to the corresponding DNF. In this method, the DTM is learned from a training library including the rigorous DNF of some representative mask clips. Given a thick-mask pattern, it is firstly decomposed into a set of segments around the sampling points at corners and edges. Then, the local DNF of each segment is calculated based on the corresponding DTM. Finally, all the local DNF segments are synthesized together to simulate the entire thick-mask DNF. The results show that the proposed method can significantly improve the simulation accuracy compared to the traditional filter-based method, meanwhile retaining a high computation speed.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3