Controlling the spin Hall effect of grafted vortex beams propagating in uniaxial crystal

Author:

Liu HouquanORCID,Yuan LiboORCID

Abstract

Though numerous studies of spin-orbit interaction (SOI) of light beams propagating along the optic axis of uniaxial crystals have been carried out, in previous studies, the initial input beams have cylindrical symmetry. In this case, the total system preserves cylindrical symmetry so that the output light after passing through the uniaxial crystal doesn’t exhibit spin dependent symmetry breaking. Therefore, no spin Hall effect (SHE) occurs. In this paper, we investigate the SOI of a kind of novel structured light beam, grafted vortex beam (GVB) in uniaxial crystal. The cylindrical symmetry of the system is broken by the spatial phase structure of the GVB. As a result, a SHE determined by the spatial phase structure emerges. It is found that the SHE and evolution of the local angular momentum are controllable both by changing the grafted topological charge of the GVB and by employing linear electro-optic effect of the uniaxial crystal. This can open a new perspective to investigate the SHE of light beams in uniaxial crystals via constructing and manipulating the spatial structure of the input beams artificially, hence offers novel regulation capabilities of spin photon.

Funder

the National Natural Science Foundations of China

Natural Science Foundations of Guangxi

Guangxi Key Laboratory Project of Optoelectronic Information Processing

Guangxi Key Laboratory Project of Automatic Detection Technology and Instrument

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3