Joint nonlinear optical signal-to-noise ratio estimation and modulation format identification based on constellation-points trajectory information and multitask 1DCNN for WDM systems

Author:

Wang Zhiguo,Bai Chenglin1ORCID,Yang Lishan1ORCID,Chi Xinyu,Qin Peng,Luo Xueyuan,Xu Hengying1ORCID,Ge PeiyunORCID

Affiliation:

1. Shandong Provincial Key Laboratory of Optical Communication Science and Technology

Abstract

We propose a joint monitoring scheme of nonlinear optical signal-to-noise ratio ( O S N R N L ) estimation and modulation format identification (MFI) in wavelength division multiplexing (WDM) systems. Based on the abundant information of both nonlinear noise (NLN) and modulation format (MF) in received signals, this scheme first counts the trajectory information of all adjacent constellation points, and then quantifies them into the adjacent matrix. Subsequently, the eigenvectors corresponding to the largest eigenvalues are extracted via eigen-decomposition of the adjacent matrix, which characterize the information of NLN and MF effectively. Finally, the eigenvectors are fed into multitask one-dimensional convolutional neural network to perform O S N R N L estimation and MFI simultaneously. To verify the effectiveness of the scheme, five-channel 28 GBaud polarization division multiplexing (PDM) 16 / 32 / 64 quadrature amplitude modulation (QAM) WDM simulation systems are built by VPI. The simulation results demonstrate that, for PDM-16/32/64QAM signals, the mean absolute errors of O S N R N L estimation are 0.18, 0.17, and 0.20 dB, respectively. At the same time, the identification accuracy rates of these three MFs have achieved 100% within the ranges of estimated O S N R N L . Furthermore, a three-channel 28 GBaud WDM experimental system is constructed to further investigate the effectiveness of trajectory information for O S N R N L estimation. The experimental results show that the O S N R N L estimation errors of PDM-16QAM are less than 0.5 dB. In addition, our analysis of complexity from two aspects of trajectory information extraction and neural network model shows that the overall complexity scale of this scheme is O ( K i , 3 M C i , 3 C o , 3 ) .

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Doctoral Research Start-up Foundation of Liaocheng University

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3