Affiliation:
1. QuEra Computing Inc.
2. Environmental Molecular Sciences Laboratory
3. Washington State University
4. University of Ottawa
Abstract
Quantitative phase imaging provides a way to image transparent objects, such as biological cells, and measure their thickness. We report on a phase-imaging method that achieves twice the phase shift and approximately 1.7 times the spatial resolution of an equivalent spatially and temporally coherent classical quantitative phase-imaging system by using quantum interference between successive spontaneous parametric downconversion events in a nonlinear crystal. Furthermore, our method is approximately 1000 times faster than imaging the parametric downconversion photons in coincidence, which requires measurement times on the order of tens of hours. Our method may be useful for imaging sensitive transparent objects that require low illumination intensities at near-infrared and longer illumination wavelengths, such as photosensitive biological samples.
Funder
National Science Foundation
Office of Naval Research
U.S. Department of Energy
Natural Sciences and Engineering Research Council of Canada
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献