Determination of stress waves and their effect on the damage extension induced by surface defects of KDP crystals under intense laser irradiation

Author:

Ding Wenyu,Zhao Linjie,Chen Mingjun,Cheng Jian,Chen Guang,Lei Hongqin,Liu Zhichao1ORCID,Geng Feng1,Wang Shengfei1,Xu Qiao1

Affiliation:

1. China Academy of Engineering Physics

Abstract

The residual crack defects on the surface of potassium dihydrogen phosphate (KDP) crystals are the bottleneck that limits the improvement of laser damage resistance in the application of high-power laser devices. The multiple stress waves introduced by these residual surface lateral cracks on crystals under laser irradiation are the main inducement for damage extension and reduction of laser damage resistance. However, the coupling of these stress waves complicates their propagation in the crystal, and the interaction mechanism between each stress wave and laser damage has not been quantitatively characterized. Herein, a laser damage dynamic model for surface lateral cracks is constructed to reproduce the dynamic behaviors of the evolution of micro-defects to sub-millimeter damage pits under laser irradiation. Combined with the time-resolved pump and probe technique, the distribution of stress waves induced by lateral cracks was detected in situ to determine the type of stress waves. Then, the initiation and extension of laser damage were analyzed quantitatively to establish the correlations between different stress waves and damage extension. It is found that the longitudinal, shear, and Rayleigh waves induced by lateral cracks lead to large crush zones on the surface of KDP crystals, as well as butterfly-like damage sites accompanied by a large number of cracks at the bottom in the longitudinal section. The scale of the damage site can reach up to approximately 150 µm for lateral crack defects with large surface widths. This study ultimately reveals the physical mechanism of damage evolution induced by lateral cracks, providing effective guidance for developing control standards of surface crack defects during optical ultra-precision machining processes. This is of great significance for the improvement of laser damage resistance of KDP crystals in high-power laser systems.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Heilongjiang Postdoctoral Fund

New Era Longjiang Excellent Master and Doctoral Dissertation Fund

Science Challenge Project

Young Elite Scientists Sponsorship Program by CAST

Self-Planned Task Foundation of State Key Laboratory of Robotics and System (HIT) of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3