Affiliation:
1. University of Birmingham
2. University of Bristol
3. Stanford University
4. University of Münster
5. Physikalisch-Technische Bundesanstalt
Abstract
Due to their topological stability and spatial confinement, particle-like field configurations have gained significant interest in many areas of physics. Only recently, the first skyrmionic hopfion was proposed in light, but its higher-order analog in optics has stayed a theoretical construct so far, and direct experimental observations also prove difficult in non-optical systems. Here we overcome this challenge by the experimental realization and analysis of a second-order skyrmionic hopfion in the polarization and phase texture of a paraxial light field in three-dimensional space. Thereby, we exemplify advanced control of observed parameters in a localized space, pioneering further experimental studies on higher-order hopfions in optics and beyond.
Funder
Deutsche Forschungsgemeinschaft
Engineering and Physical Sciences Research Council
Horizon 2020 Framework Programme
Deutscher Akademischer Austauschdienst
Stanford University
Leverhulme Trust
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献