Temperature and strain simultaneous sensing measurement based on an all-fiber Mach-Zehnder interferometer and fiber Bragg grating

Author:

Zhu Junjie12,He Wei1,Li Shaode1,Li Zhihan1,Zhu Lianqing1

Affiliation:

1. Beijing Information Science and Technology University

2. Guangzhou Nansha Intelligent Photonic Sensing Research Institute

Abstract

We designed and fabricated what we believe to be a novel dual-parameter fiber optic sensor for simultaneous measurement of temperature and strain, which was composed of a femtosecond laser inscribed fiber Bragg grating (FBG), three segments of a single-mode fiber (SMF), and two segments of a multimode fiber (MMF), forming a SMF-MMF-FBG-MMF-SMF structure. The FBG and Mach–Zehnder interferometer (MZI) were present in this structure so that the changes of the temperature and strain parameters can be sensed by the shifts of the reflection center wavelength of the FBG and the interference valley wavelength of the MZI. We simulated the light field distribution of the sensor structure, compared the shapes of the interference spectra formed by the MZI structure with different sensing arm lengths of 25, 35, and 45 mm, and analyzed the spectra in the spatial frequency domain. The simulation results showed that the interference spectrum of the MZI structure with a 25 mm length sensing arm was clearer and more suitable for the experiment. The experimental results showed that the temperature sensitivity of the FBG and MZI was 14.81 and 43.54 pm/°C in the range of 80°C to 240°C, and the strain sensitivity was 1.49 and −2.58 pm/µε in the range of 0 to 1200 µε, with a high linearity and excellent repeatability. The sensor is economical, sensitive, and convenient to fabricate, and exhibits promising applications in the fields of biochemical medical detection and industrial production monitoring.

Funder

National Natural Science Foundation of China

111 Project

Beijing Municipal Natural Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3