Abstract
Electronically reconfigurable transmitarray (ERTA) combines the advantages of optic theory and coding metasurface mechanism with the characteristic of low-loss spatial feed and real-time beam manipulation. Designing a dual-band ERTA is challenging due to multiple factors, including large mutual coupling generated by dual-band operation and separate phase control in each band. In this paper, a dual-band ERTA is demonstrated with the capability of fully independent beam manipulation in two divided bands. This dual-band ERTA is constructed by two kinds of orthogonally polarized reconfigurable elements which share the aperture in an interleaved way. The low coupling is achieved by utilizing polarization isolation and a backed cavity connected to the ground. To separately control the 1-bit phase in each band, a hierarchical bias method is elaborately presented. As proof of concept, a dual-band ERTA prototype composed of 15 × 15 upper-band elements and 16 × 16 lower-band elements is designed, fabricated, and measured. Experimental results verify that fully independent beam manipulation with orthogonal polarization is implemented in 8.2-8.8 GHz and 11.1-11.4 GHz. The proposed dual-band ERTA may be a suitable candidate for space-based synthetic aperture radar imaging.
Funder
Natural Science Basic Research Program of Shaanxi Province, China
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics