Abstract
Laser speckle contrast imaging (LSCI) is a widefield imaging technique that enables high spatiotemporal resolution measurement of blood flow. Laser coherence, optical aberrations, and static scattering effects restrict LSCI to relative and qualitative measurements. Multi-exposure speckle imaging (MESI) is a quantitative extension of LSCI that accounts for these factors but has been limited to post-acquisition analysis due to long data processing times. Here we propose and test a real-time quasi-analytic solution to fitting MESI data, using both simulated and real-world data from a mouse model of photothrombotic stroke. This rapid estimation of multi-exposure imaging (REMI) enables processing of full-frame MESI images at up to 8 Hz with negligible errors relative to time-intensive least-squares methods. REMI opens the door to real-time, quantitative measures of perfusion change using simple optical systems.
Funder
BrightFocus Foundation
National Institute on Aging
Subject
Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献