Translation-invariant context-retentive wavelet reflection removal network

Author:

Hsu Wei-YenORCID,Wu Wan-Jia

Abstract

It has been widely investigated for images taken through glass to remove unwanted reflections in deep learning. However, none of these methods have bad effects, but they all remove reflections in specific situations, and validate the results with their own datasets, e.g., several local places with strong reflections. These limitations will result in situations where real reflections in the world cannot be effectively eliminated. In this study, a novel Translation-invariant Context-retentive Wavelet Reflection Removal Network is proposed to address this issue. In addition to context and background, low-frequency sub-images still have a small amount of reflections. To enable background context retention and reflection removal, the low-frequency sub-images at each level are performed on the Context Retention Subnetwork (CRSn) after wavelet transform. Novel context level blending and inverse wavelet transform are proposed to remove reflections in low frequencies and retain background context recursively, which is of great help in restoring clean images. High-frequency sub-images with reflections are performed on the Detail-enhanced Reflection layer removal Subnetwork to complete reflection removal. In addition, in order to further separate the reflection layer and the transmission layer better, we also propose Detail-enhanced Reflection Information Transmission, through which the extracted features of reflection layer in high-frequency images can help the CRSn effectively separate the transmission layer and the reflection layer, so as to achieve the effects of removing reflection. The quantitative and visual experimental results on benchmark datasets demonstrate that the proposed method performs better than the state-of-the-art approaches.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3