Affiliation:
1. Universidad EAFIT
2. MIT Graduate Program in Electrical Engineering and Computer Science
3. Harvard Medical School and Massachusetts General Hospital
4. Massachusetts Institute of Technology
Abstract
We present computational refocusing in polarization-sensitive optical coherence tomography (PS-OCT) to improve spatial resolution in the calculated polarimetric parameters and extend the depth-of-field in phase-unstable, fiber-based PS-OCT systems. To achieve this, we successfully adapted short A-line range phase-stability adaptive optics (SHARP), a computational aberration correction technique compatible with phase-unstable systems, into a Stokes-based PS-OCT system with inter-A-line polarization modulation. Together with the spectral binning technique to mitigate system-induced chromatic polarization effects, we show that computational refocusing improves image quality in tissue polarimetry of swine eye anterior segment ex vivo with PS-OCT. The benefits, drawbacks, and potential applications of computational refocusing in anterior segment imaging are discussed.
Funder
National Institutes of Health
Universidad EAFIT
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献