M13 bacteriophage-based high-sensitivity Fabry-Pérot etalon for detecting humidity and volatile organic compounds

Author:

Kim Ye-Ji,Kim Na-Yeong,Kim Taeyeon1,Jeong Tae-Young,Jeong Tae-In2,Kim Seungchul2,Kang Yong-Cheol1,Kim Moonil3,Moon Woosok1,Kim Sung-Jo,Oh Jin-Woo2ORCID

Affiliation:

1. Pukyong National University

2. Pusan National University

3. Korea Research Institute of Bioscience and Biotechnology (KRIBB)

Abstract

Various sensor applications have been developed for protection against hazardous environments, and research on functional materials to enhance performance has also been pursued. The M13 bacteriophage (M13) has found utility in sensor applications like disease diagnosis and detection of harmful substances due to its potential for controlling interaction with target substances through adjustments in electrochemical and mechanical properties via genetic engineering technology. However, while optimizing reactivity or binding affinity between M13 and target materials is crucial for sensor performance enhancement, precise dynamic measurement methods for this were lacking. This study demonstrates the application of an M13-based dynamic actuator in a Fabry–Pérot etalon (M13-FPE) as a spacer for precise measurement of humidity and reactivity to volatile organic compounds (VOCs). The transmission spectrum is optimized by adjusting the reflectance and cavity gap size (dM13) of the two mirrors comprising the M13-FPE, and changes are measured in a rainbow-color-dotted (RCD) pattern using a customized spectrometer. Utilizing the peak wavelengths of the RCD pattern, the change in dM13 is dynamically and precisely measured, revealing approximately 3% and 0.3% swelling for ethanol and isopropyl alcohol, respectively. M13 demonstrates binding affinities of 827 ppb and 158 ppb for ethanol and isopropyl alcohol, respectively, with its low reactivity measured precisely, exhibiting an error of 0.03 nm using the peak wavelength change rate.

Funder

Ministry of Science and ICT, South Korea

LAMP

Pusan National University

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3