Cross-calibration method based on an automated observation site

Author:

Huang Dong12,Li Xin1,Zheng Xiaobing1,Wei Wei1,Guo Fuxiang12,Zhang Quan1

Affiliation:

1. Chinese Academy of Sciences

2. University of Science and Technology of China

Abstract

Cross-calibration methods are widely used in high-precision remote sensor calibrations and ensure observational consistency between sensors. Because two sensors must be observed under the same or similar conditions, the cross-calibration frequency is greatly reduced; performing cross-calibrations on Aqua/Terra MODIS, Sentinel-2A/Sentinel-2B MSI and other similar sensors is difficult due to synchronous-observation limitations. Additionally, few studies have cross-calibrated water-vapor-observation bands sensitive to atmospheric changes. In recent years, standard automated observation sites and unified processing technology networks, such as an Automated Radiative Calibration Network (RadCalNet) and an automated vicarious calibration system (AVCS), have provided automatic observation data and means for independently, continuously monitoring sensors, thus offering new cross-calibration references and bridges. We propose an AVCS-based cross-calibration method. By limiting the observational-condition differences when two remote sensors transit over wide temporal ranges through AVCS observation data, we improve the cross-calibration opportunity. Thereby, cross-calibrations and observation consistency evaluations between the abovementioned instruments are realized. The influence of AVCS-measurement uncertainties on the cross-calibration is analyzed. The consistency between the MODIS cross-calibration and sensor observation is within 3% (5% in SWIR bands); that for the MSI is within 1% (2.2% in the water-vapor-observation band); and for the cross-calibration of Aqua MODIS and the two MSI, the consistency between the cross-calibration-predicted TOA reflectance and the sensor-measured TOA reflectance was within 3.8%. Thus, the absolute AVCS-measurement uncertainty is also reduced, especially in the water-vapor-observation band. This method can be applied to cross-calibrations and measurement consistency evaluations of other remote sensors. Later, the spectral-difference influences on cross-calibrations will be further studied.

Funder

Hefei Institutes of Physical Science, Chinese Academy of Sciences

the Strategic Priority Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3