ASA-BiSeNet: improved real-time approach for road lane semantic segmentation of low-light autonomous driving road scenes

Author:

Liu YangORCID,Yi Fulong1,Ma Yuhua1,Wang Yongfu

Affiliation:

1. Huaneng Power International Inc.

Abstract

The solution to the problem of road environmental perception is one of the essential prerequisites to realizing the autonomous driving of intelligent vehicles, and road lane detection plays a crucial role in road environmental perception. However, road lane detection in complex road scenes is challenging due to poor illumination conditions, the occlusion of other objects, and the influence of unrelated road markings. It also hinders the commercial application of autonomous driving technology in various road scenes. In order to minimize the impact of illumination factors on road lane detection tasks, researchers use deep learning (DL) technology to enhance low-light images. In this study, road lane detection is regarded as an image segmentation problem, and road lane detection is studied based on the DL approach to meet the challenge of rapid environmental changes during driving. First, the Zero-DCE++ approach is used to enhance the video frame of the road scene under low-light conditions. Then, based on the bilateral segmentation network (BiSeNet) approach, the approach of associate self-attention with BiSeNet (ASA-BiSeNet) integrating two attention mechanisms is designed to improve the road lane detection ability. Finally, the ASA-BiSeNet approach is trained based on the self-made road lane dataset for the road lane detection task. At the same time, the approach based on the BiSeNet approach is compared with the ASA-BiSeNet approach. The experimental results show that the frames per second (FPS) of the ASA-BiSeNet approach is about 152.5 FPS, and its mean intersection over union is 71.39%, which can meet the requirements of real-time autonomous driving.

Funder

Natural Science Foundation of Liaoning Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3