Reduction of relative intensity noise in a broadband source-driven RFOG using a high-frequency modulation technique

Author:

Liu Shuang,Liu Lu,Hu Junyi,Liu Qingwen1ORCID,Ma Huilian,He Zuyuan1

Affiliation:

1. Shanghai Jiao Tong University

Abstract

A broadband source-driven resonant fiber-optic gyroscope (RFOG) can reduce coherence-related noise, thus achieving a better sensitivity with a much simpler configuration than the traditional system with a coherent source. Its detection sensitivity, however, is still limited by the excess relative intensity noise (RIN) of the broadband source. In this paper, the RIN error mechanism in this broadband source-driven RFOG is revealed and countermeasures are presented. We demonstrate that the use of a high-finesse fiber-optic ring resonator and a high-frequency modulation-demodulation technique can reduce the RIN-induced error. It is indicated that the optimal modulation parameters can provide a RIN-induced error reduction of 6.1 dB, allowing the broadband source-driven RFOG to operate near the shot-noise-limited theoretical sensitivity. With the optimal high-frequency modulation-demodulation technique, an angle random walk of 0.0013°/√h is achieved with a 200-m-long fiber-optic ring resonator of 7.6 cm diameter. This is the best result reported to date, to the best of our knowledge, for fiber-optic gyroscopes of this size.

Funder

National Natural Science Foundation of China

State Key Laboratory of Advanced Optical Communication Systems and Networks

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3