Autonomic end-to-end quality-of-service assurance over QKD-secured optical networks

Author:

Zhu Qingcheng,Yu Xiaosong,Wang Zihao,Zhao YongliORCID,Nag Avishek1,Wang Shuang2,Chen Wei2,Zhang Jie

Affiliation:

1. University College Dublin

2. University of Science and Technology of China

Abstract

Quantum key distribution (QKD) provides future-proof security for data communications over optical networks. Currently, sophisticated QKD systems are developed and the scale of QKD-secured optical networks (QKD-ONs) becomes larger. Given the complex network conditions and dynamic end-to-end security services in QKD-ONs, autonomic management and control becomes a promising paradigm to support end-to-end quality-of-service (QoS) assurance in an efficient and stable way without requiring human intervention. Hence, to enable and utilize the autonomic functionalities over QKD-ONs for realizing the end-to-end QoS assurance becomes a challenge. This work enhances the software defined networking (SDN) technique to tackle this challenge because SDN can add programmability and flexibility for QKD-ON’s management and control. A new architecture of SDN-based QKD-ONs supporting autonomic end-to-end QoS assurance is designed, where a knowledge engine with autonomic control loops is developed in the SDN controller. We present the autonomic end-to-end QoS assurance procedure, and the cross-layer collaborative QoS assurance (CLC-QA) strategy for implementing the autonomic functionalities in the network level over QKD-ONs. We also establish an experimental testbed of SDN-based QKD-ONs supporting autonomic end-to-end QoS assurance, and perform the numerical simulation to verify our proposed approaches. Experimental results demonstrate that our presented approaches can achieve the millisecond-level overall latency of 337 ms and 618 ms, during the first and second autonomic adjustment without human intervention in case of the autonomic QoS protection. Moreover, the CLC-QA strategy is evaluated under different traffic loads by being compared with the baseline strategy without cross-layer collaboration. It can improve 22.5% protection success ratio and save 5.7% average key consumption.

Funder

National Natural Science Foundation of China

Innovation Program for Quantum Science and Technology

Funds for Creative Research Groups of China

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3